摘要

本发明涉及信号处理技术领域,尤其是基于跨设备前额脑电情绪识别的方法和系统,包括步骤:将预处理后的源域脑电数据、目标域脑电数据一起输入多空间域适应网络模型,通过多空间域适应网络模型提取多空间的脑电信号特征,计算源域脑电数据和目标域脑电数据之间的多空间的域适应损失,计算源域脑电数据的分类损失;最小化多空间域适应网络总损失,直至多空间域适应网络模型收敛;将待分类的目标域脑电数据输入收敛模型中进行测试,输出对目标域中脑电数据所属类别的预测情绪标签。本发明通过结合多空间域适应网络模型,可以消除个体差异和设备差异,提高了模型的泛化能力,在跨设备研究中取得了较好的分类效果。