摘要
土壤高光谱在采集过程中难以避免噪声干扰,造成高光谱数据信噪比较低,影响土壤有机质含量估测精度。尝试探究小波能量特征方法,降低高光谱噪声,提升土壤有机质含量高光谱估测模型性能。选取湖北省潜江市运粮湖管理区为试验区,于2016年9月采集80份深度为0~20 cm的水稻土样本;土壤样本经风干、碾磨、过筛等一系列处理后,在实验室内采集样本光谱,并通过重铬酸钾-外加热法测定土壤有机质含量;利用浓度梯度法,将总体样本集(80个样本)划分为建模集(54个样本)和验证集(26个样本);以mexh为小波基函数进行连续小波变换(continuous wavelet transformation),将土壤高光谱转换为10个分解尺度的小波系数(wavelet coefficients);逐尺度计算小波系数的均方根作为小波能量特征(energy features),将10个尺度的小波能量特征组成小波能量特征向量(energy features vector);逐尺度逐波长计算小波系数与有机质含量的相关系数,将达到极显著水平(p2)、相对估测误差(RPD)和均方根误差(RMSE)分别为0.77, 1.82和0.82。因此,小波能量特征方法既能够提高数据的信噪比,提升土壤有机质含量的估测精度,又实现了土壤高光谱数据降维,降低了模型复杂度,可用于土壤有机质含量快速测定和土壤肥力动态监测等研究。
- 单位