恶意代码已经成为威胁网络安全的重要因素之一,安全人员一直致力于研究如何有效检测恶意代码,在动态分析方法中可以通过程序的API调用序列进行分析。通过对恶意软件的API调用序列进行编码处理,可以获得图片格式的数据,进而使用卷积神经网络训练出分类模型,从而实现对恶意软件进行分类,获得较高的准确率,针对阿里云天池上的数据集进行实验验证,实验使用有向图编码方式,采用不同的卷积神经网络架构,对比不同方法的准确性。