摘要
本文分析了传统FAGM(1, 1)模型建模过程中存在的误差,提出了一种基于Simpson公式改进的FAGM(1, 1)模型。首先,基于分数阶累加生成算子和分数阶累减生成算子建立分数阶FAGM(1,1)模型。其次,利用Simpson积分公式对FAGM(1,1)模型的背景值进行改进,建立SFAGM(1,1)模型。进一步,应用遗传算法确定SFAGM(1,1)模型的最优阶数以提高模型的预测精度。最后,以中国人均GDP为例,对比分析GM(1,1)模型、Simpson改进的GM(1,1)模型(SGM(1,1))、FAGM(1,1)模型、SFAGM(1,1)模型的模拟结果,并对"十三五"时期的人均GDP进行预测,其结果表明SFAGM(1,1)模型比GM(1,1)、SGM(1,1)、FAGM(1,1)在人均GDP的预测方面有更高的精度,"十三五"期间人均GDP年平均增长率为10.64%,到2020年达到83146.97元,是2010年人均GDP的2.69倍,以2010年的人均GDP为基准,到2020年将能够实现翻一番的目标。
- 单位