摘要

电力用户负荷画像建模是一种面向用户的、通过挖掘用电数据中的负荷特性建立差异化画像标签的重要方法,现有研究方法多侧重于画像方法的研究,而缺乏完善的负荷特性标签体系。文章提出了一种基于数据驱动的负荷特性分析通用方法,从调度部门最关注的用电规律性、平顺度、负荷调控能力以及疫情影响度四方面构建负荷特性标签体系。首先,采用模糊C均值聚类算法从海量实际负荷数据中提取行业典型负荷曲线,综合考虑各行业用电特性,从4个方面构建完善的负荷特性标签体系,并建立考虑疫情影响的多类型用户负荷特性画像模型。其次,细化负荷特性标签,给出相应指标定义和计算方法,并采用模糊聚类算法判定指标分界,采用熵权法对用电平顺度进行综合评分。最后,通过算例对各行业典型用户的用电数据进行分析,并给出普适的指标分界,为各行业电力用户负荷建模提供了一种新思路。