摘要

采用电感耦合等离子体原子发射光谱(ICP-AES)测定了四种品牌56个白酒样品(五粮液,郎酒,全兴,五津醇)中的16种元素含量。通过对结果进行z-score标准化,消除各元素间量纲差异,再对其进行主成分分析。结果表明,第一主成分的方差贡献率为40.3%,前十主成分的贡献率达96.3%,基本保留了原变量的所有信息。选择前十主成分建立决策树分类预测模型,模型的交叉验证准确率高达97.6%,再用模型预测未参与建模的15个白酒样品,准确率高达100%。模型能够准确区分五粮液,郎酒,全兴,五津醇四种品牌白酒。

全文