摘要

油中溶解气体浓度预测对变压器早期故障检测至关重要。为了提高预测精度,本文提出了奇异谱分析(SSA)结合长短期记忆网络(LSTM)的预测模型。首先针对传统序列分解做法中的数据泄露问题,提出一种基于SSA逐步分解的采样策略,然后基于该策略将特征复杂的原始油中溶解气体浓度序列分解为特征相对单一的趋势分量与波动分量,最后利用LSTM网络对各个分量分别进行单步和多步预测。累加各分量的预测值,得到原气体浓度的预测结果。算例表明,相较于单一LSTM,本文所提模型在实验天数内整体的预测精度更高。

全文