摘要
设R是任何环,M是R-模.S是包含在R的中心内的非零因子乘法封闭集,对任意的非零因子u∈S,Ext1R(R/Ru,M)=0,则称M是S-可除模;若对任何S-正则左理想I,Ext1R(R/I,E)=0,则称E是S-正则内射模.环R称为S-Noether环,是指R的S-正则左理想是有限生成的.交换环R称为S-Dedekind环,是指R的任何S-正则理想是可逆理想.讨论S-Noether环的基本性质,并用S-可除模来刻画SDedekind环,证明R是S-Dedekind环当且仅当S-可除模是S-正则内射模.
- 单位