摘要
针对传统模板攻击存在的多元高斯正态分布假设受限、预处理复杂度高且不适用于带掩码防护的应用场景等问题,研究基于深度学习的模板攻击的改进方法.利用深度学习模型ResNet,对轻量级分组密码算法KLEIN实施改进模板攻击,根据数据的标签对数据进行分类.在密钥恢复阶段利用密钥优势叠加的方法,平均需要15条相同密钥加密所产生的能量迹即可有效区分正确密钥.相较于传统的模板攻击,本文的攻击方法成功恢复密钥所需攻击能量迹减少了83.7%,降低了模板攻击的难度,有效提高了模板攻击的成功率和效率.
-
单位四川大学; 数学学院; 信息工程大学