摘要
为有效解决航空发动机气路故障诊断难题,建立了基于特征优化与改进KNN的航空发动机气路故障诊断模型。利用特征优化算法对发动机故障特征进行处理,包括特征增维与近邻成分分析算法;将特征优化后的特征输入改进KNN算法,建立基于特征优化与改进KNN算法的故障诊断模型;为验证所建立故障诊断模型的准确性,在四台CFM56-7FB发动机数据上进行实验验证,结果表明:基于特征优化与改进KNN算法的故障诊断模型的准确率可达98%以上,能够达到智能诊断的目的。
- 单位
为有效解决航空发动机气路故障诊断难题,建立了基于特征优化与改进KNN的航空发动机气路故障诊断模型。利用特征优化算法对发动机故障特征进行处理,包括特征增维与近邻成分分析算法;将特征优化后的特征输入改进KNN算法,建立基于特征优化与改进KNN算法的故障诊断模型;为验证所建立故障诊断模型的准确性,在四台CFM56-7FB发动机数据上进行实验验证,结果表明:基于特征优化与改进KNN算法的故障诊断模型的准确率可达98%以上,能够达到智能诊断的目的。