摘要
联邦学习方法在大数据时代有效解决了“数据孤岛”问题,也在一定程度上保障了数据隐私安全。然而,联邦学习的许多方面仍面临隐私风险。首先归纳总结了联邦学习面临的常见隐私威胁,并针对不同类型的隐私威胁归纳出对应的隐私保护措施;其次重点针对差分隐私方法进行了探讨,归纳总结了一些差分隐私的实现方法;最后基于差分隐私设计了一种适用于联邦学习系统的隐私保护手段。
- 单位
联邦学习方法在大数据时代有效解决了“数据孤岛”问题,也在一定程度上保障了数据隐私安全。然而,联邦学习的许多方面仍面临隐私风险。首先归纳总结了联邦学习面临的常见隐私威胁,并针对不同类型的隐私威胁归纳出对应的隐私保护措施;其次重点针对差分隐私方法进行了探讨,归纳总结了一些差分隐私的实现方法;最后基于差分隐私设计了一种适用于联邦学习系统的隐私保护手段。