摘要
针对机电设备运行状态受多因素影响,变化趋势复杂,难以用单一预测方法进行有效预测的问题,提出一种新的基于改进灰色系统—支持向量机—神经模糊系统的智能混合预测模型。该模型首先利用改进灰色系统弱化数据序列波动性、支持向量机处理小样本和模糊神经系统处理非线性模糊信息的优点,分别进行趋势预测,然后通过改进遗传算法对这三者的预测结果进行自适应加权组合。将该模型应用于信号随机波动性较强、趋势变化复杂的标准算例和某机组振动趋势的预测中,研究结果表明,该模型的预测性能均优于上述三种单一预测方法。
-
单位西安交通大学; 西安交通大学机械制造系统工程国家重点实验室