摘要
Chirp signals are widely used in communication and exploration. The parameter analysis of the chirp signals often uses a Wigner-Ville Distribution (WVD) based time-frequency analysis method, which achieves high time-frequency resolution. However, this method has defects in cross terms, high sidelobes, and spectral aliasing problems. To solve these problems, a time-frequency analysis method called Spatially Variant Apodiztion-rearrange Wigner Ville Distribution (SVA-rWVD) is proposed, which achieves low sidelobes by exploiting the Spatially Variant Apodization (SVA) techniques, and avoids the cross terms and the spectral aliasing problems by applying the Short Time Fourier Transform (STFT). Furthermore, a new time-frequency distribution is obtained from the proposed method. Extensive simulations show that the time-frequency distribution obtained by the proposed method not only reduces the sidelobe level to -40 dB but also eliminates cross terms and spectral aliasing for both single-component and multi-component chirp signals.
- 单位