摘要
针对KATAN48算法的安全性分析问题,提出了一种基于神经区分器的KATAN48算法条件差分分析方法。首先,研究了多输出差分神经区分器的基本原理,并将它应用于KATAN48算法,根据KATAN48算法的数据格式调整了深度残差神经网络的输入格式和超参数;其次,建立了KATAN48算法的混合整数线性规划(MILP)模型,并用该模型搜索了前加差分路径及相应的约束条件;最后,利用多输出差分神经区分器,至多给出了80轮KATAN48算法的实际密钥恢复攻击结果。实验结果表明,在单密钥下,KATAN48算法的实际攻击的轮数提高了10轮,可恢复的密钥比特数增加了22比特,数据复杂度和时间复杂度分别由234和234降至216.39和219.68。可见,相较于前人单密钥下的实际攻击,所提方法能够有效增加攻击轮数和可恢复的密钥比特数,同时降低攻击的计算复杂度。
-
单位信息工程大学