基于深度学习的轮胎缺陷检测过程中,由于轮胎数据集为长尾数据集,某些缺陷类别的轮胎图片数量较少,造成此类缺陷的数据分类精度不高。本文在双边分支神经网络(BBN)分类算法的基础上,通过改进特征提取网络的结构、损失函数和权衡参数提高轮胎数据集中尾类数据分类精度。以主流数据集长尾CIFAR-10、长尾CIFAR-100和本实验室自制轮胎数据集为测试数据进行实验分析,实验结果表明数据集的尾类小样本数据的分类精度提高约10%。