摘要

为提高船舶目标智能检测的精度和实时性,提出一种基于YOLOv3算法的船舶目标检测方法,可用于视频图像的监测与跟踪。参照PASCAL VOC数据集格式,构建船舶目标检测数据集,采用k-means聚类先验框、mixup、标签平滑化等方法对算法进行改进和优化,在GPU(Graphic Processing Unit)云服务器中完成算法模型的训练和检测,并与FasterR-CNN、SSD(Single Shot MultiBox Detector)、原始YOLOv3等算法进行模型性能的试验对比。试验结果表明:改进的算法明显优于其他算法,其在测试集上的平均精度均值(mean Average Precision, mAP)和检测速度分别达到89.90%和30每秒检测帧数(Frames Per Second, FPS)。

  • 单位
    上海船舶运输科学研究所