摘要

为了解决细粒度情感识别效果欠佳和深度学习方法可解释性差等问题,提出一种将本体与深度学习融合的细粒度情感分析模型。在模型中,将领域本体与卷积神经网络相融合,以识别文本中的显式和隐式主题。同时,将情感词典、双向长短时记忆网络和注意力机制相结合,用于分析在线评论文本的细粒度情感。实验结果表明,与其他方法相比,所提的细粒度情感分析方法在准确率、召回率和F1值等方面均具有一定的优势。

  • 单位
    中国铁道科学研究院集团有限公司

全文