摘要

针对新建光伏发电站原始数据匮乏导致光伏功率预测精度低的问题,提出了一种基于梯度惩罚Wasserstein生成对抗网络(Wasserstein generative adversarial network with gradient penalty,WGAN-GP)和改进长短期记忆网络的光伏功率短期预测模型。首先使用WGAN-GP学习原始真实光伏数据的样本分布规律,然后生成与原始数据相似的高质量新样本,从而实现训练集数据增强;其次,采用纵横交叉算法(crisscross optimization algorithm,CSO)对长短时记忆网络(longshort-termmemory,LSTM)的全连接层参数进行优化,构建LSTM-CSO组合模型对光伏功率进行预测。以澳洲某光伏发电站数据进行仿真建模,实验结果表明:使用数据增强后的样本训练预测模型能够有效提高模型的预测精度,且对原始训练集数据扩充数据量的比例越大,预测模型对于光伏功率预测的精度越高。同时LSTM-CSO相对于LSTM在各个季节类型的不同气象日中均具有更高的预测准确率,以春季测试集为例,LSTM-CSO模型在春季的晴天、多云、雨天下的均方根误差相比于LSTM模型分别降低5.62%、3.44%、10.44%。

全文