摘要

文章以高频数据下异质自回归(HAR)模型为基础,将模型的部分参数进行时变化处理,利用卡尔曼滤波方法进行参数估计,并引入新的要素——已实现的偏度(RS)作为新解释变量,构造状态空间HAR-RV-RS模型,进行波动率预测研究。文章分别选取了上证综指和深证成指3 410个交易日的五分钟高频数据,通过样本内参数估计和样本外滚动时间窗预测,结合损失评价函数与HAR-RV、状态空间HAR-RV进行模型比较。实证研究表明,参数时变化和加入RS后的状态空间HAR-RV-RS模型预测效果有显著提升。