摘要
<正>随着电池在便携式电子产品、电动交通工具和静态储存系统等领域的广泛应用,人们对具有更长续航能力的高能电池需求不断增长。基于公式:质量能量密度=容量×电压/质量,高能电池通常采用具有更高工作电压或更高容量的新型电极材料,但是这些新型电极材料与电解质之间界面不稳定性制约了高能电池的发展。因此,采用原位技术手段,深入研究和理解电极/电解质界面反应过程和界面性质对发展高能电池至关重要[1]。气体是电极/电解质界面反应的重要
- 单位
<正>随着电池在便携式电子产品、电动交通工具和静态储存系统等领域的广泛应用,人们对具有更长续航能力的高能电池需求不断增长。基于公式:质量能量密度=容量×电压/质量,高能电池通常采用具有更高工作电压或更高容量的新型电极材料,但是这些新型电极材料与电解质之间界面不稳定性制约了高能电池的发展。因此,采用原位技术手段,深入研究和理解电极/电解质界面反应过程和界面性质对发展高能电池至关重要[1]。气体是电极/电解质界面反应的重要