摘要

光伏发电精准预测是光伏新能源合理调度的依据,然而新建光伏电站发电样本数据不足是降低预测精度的重要因素。利用数据增强算法对光伏发电样本进行扩充,是解决小样本光伏发电预测问题的重要方法,因此,提出一种基于WGAN(Wasserstein generative adversarial network)算法的数据增强方法和基于LSTM算法的小样本光伏发电预测方法。利用源域数据集训练WGAN算法并引入深度迁移学习算法对其训练参数进行迁移优化,完成小样本数据集高效扩充。通过Pearson系数对气象参数和发电量的相关性进行分析,对多气象参数权重进行赋值,利用实际发电值修正LSTM预测模型。公开数据集实验结果表明,该方法对小样本光伏发电预测准确性提升了33.4%,对新建的太阳能电站发电预测具有实际指导意义。