摘要

在海量信息的背景下,用户画像是实现对用户精准推荐服务的有效工具。科技信息用户画像的关键环节是根据用户关注的文献信息进行主题词抽取。文献主题词抽取的质量直接影响用户画像以及基于用户画像的内容推荐的精准度。鉴于目前常用的文献主题词抽取方法存在高维特征表征稀疏、泛化能力差、易用性受限等问题,提出基于文本共现词分析与TextRank算法的主题特征抽取方法。用该方法对农业科技信息平台用户关注和浏览的文献数据进行主题抽取,将获得的核心特征词作为用户画像的标注主题词,并据此构建用户主题推荐表达式进行文献推荐效果验证。结果显示,采用该方法的文献推荐准确率为93.3%,显著优于高频词法(70.4%)、共现词分析法(74.1%)和TextRank算法(77.8%),表明改进的文献主题词抽取方法在农业信息用户画像及信息推荐服务中具有很好的应用前景。