多星融合的土壤湿度滚动式估算模型

作者:Liang Yueji; Ren Chao*; Huang Yibang; Wang Haoyu; Lu Xianjian; Yan Hongbo
来源:Yaogan Xuebao/Journal of Remote Sensing, 2019, 23(4): 648-660.
DOI:10.11834/jrs.20197414

摘要

Soil moisture content is an important parameter in hydrology, meteorology, and agriculture and is vital for meteorological forecast, flood disaster, and water resource cycle. Global positioning system interferometric reflectometry is a new remote sensing technique with low cost and high efficiency and resolution. This technique can be used to estimate near-surface soil moisture for the area surrounding the antenna from signal-to-noise ratio (SNR) data. In this study, a non-linear sliding estimation method of soil moisture based on multi-satellite fusion was proposed in consideration of the advantages of multi-satellite convergence and the time and space scale of soil moisture. First, the direct and reflection signals of GPS satellites were separated by means of low-order polynomial fitting. Then, the sinusoidal fitting model of reflection signals was established, and the relative delay phase of the SNR interferogram was obtained. Finally, a linear regression model was used to analyze and select the phase of SNR interferogram, and the sliding estimation method of the soil moisture using the least square support vector machine based on multi-system fusion was established. On the basis of the monitoring data provided by US Plate Boundary Observations Project, the feasibility and effectiveness of using single and multiple GPS satellites for sliding estimation of soil moisture were compared and analyzed. Results of the two types of data showed that the linear regression equation could efficiently describe the relationship between relative retardation phase and soil moisture and effectively select GPS satellites by setting the threshold range of correlation coefficient. The optimal parameters of least square support vector machine were selected by grid search method. Over-fitting did not occur in the process of multi-star fusion inversion, and the advantage of non-linear weight determination was fully exerted. When a single satellite was used for soil moisture inversion, the variation law of soil moisture was inaccurately obtained, and the error of inversion error fluctuated greatly, thereby resulting in the jump phenomenon. When the rolling multi-star fusion inversion model was used, the fluctuation of inversion error was relatively close, thereby effectively suppressing the transition phenomenon. The correlation coefficients between the estimated results and the measured values of soil moisture were 0.942 and 0.962, respectively. The root mean square errors were 0.072 and 0.032, which were at least 18.18% higher than those of some single satellites. The theoretical analysis and experiment showed that this method had fully utilized the advantages of least square support vector machine and effectively integrated the performance of each satellite. Overall, the method required less modeling data, the sliding mode could achieve long time estimation, and the estimation error was relatively stable. This method not only ensured the stability of the local error in the estimation process but also effectively restrained the abnormal jump phenomenon easily when single satellite was estimated. The inversion process was not easily affected by a single satellite. Therefore, the estimation of soil humidity can be treated as non-linear event, and multi-system fusion estimation is feasible and effective. ? 2019, Science Press. All right reserved.

全文