摘要

无监督行人重识别因其在真实监控场景中具备良好的可扩展性而备受关注。现有的无监督行人重识别方法主要通过基础骨干网络获取粗略的全局特征来训练网络,很少利用局部细化分支与全局特征共享来形成更具有鉴别性的特征描述符。本文提出一种基于局部细化多分支与全局特征共享的特征提取网络,该网络融合了粗略的全局特征和局部细化分支中的细腻特征来获取行人多样化的特征表达。另外,为了提升分支网络对潜在关键区域信息的捕获能力,在分支操作前放置通道细化信息融合的注意力块来增强网络对行人特征的关注力度,执行细化特征的专注学习。通过在Market-1501、DukeMTMC-reID和MSMT17数据集上的实验结果验证了所提方法的有效性,平均精度(mAP)分别提升了4.4%、3.2%、6.4%,其中在Market-1501数据集上的平均精度达到了83.3%。

全文