摘要
本文以极端天气中的雷暴天气为研究对象,基于历史气象数据预测未来三小时是否发生雷暴。为预测雷暴是否发生,本文分别对极端天气气象数据的采样、数据预处理、特征选择,以及建模分析进行了研究,最终提出一种基于机器学习方法的HY-FMV模型框架对雷暴天气进行预测。该模型采用混合模型进行数据预处理,基于概率分布与模型评价进行特征的选择和构建,并使用梯度提升树算法对极端天气进行预测分类。最后,本文以2010年到2015年福建和广东两省数据为例,分别使用本文所提出的HY-FMV模型,和随机森林算法等进行雷暴天气预测,结果表明,本文所提出的HY-FMV模型在F1指标上精度达到78%,相比其他算法,在雷暴天气预测精度上提高了0.5%-0.6%。
-
单位中国科学院大学; 中国人民解放军61741部队