摘要

针对现有图卷积网络(GCN)需要预先定义人体骨架拓扑图和模型较大的问题,提出了基于时空自适应图卷积网络(ST-AGCN)的跌倒检测算法。该网络包括3个部分:利用HRNet姿态估计算法从视频中提取人体骨架点序列,并预处理成四维张量;引入归一化嵌入式高斯函数通过学习(无需人工预定义)得到人体拓扑图,利用空间自适应图卷积获取人体关联特征;利用多尺度卷积提取时间运动特征,提高模型获取动态信息的能力。在公开数据集和自建数据集上分别进行仿真,准确率分别达95.45%和99.55%。结果表明,该算法优于目前GCN方法,参数量只有后者的1/4甚至更少。本文算法还可以适用于不同的数据集。

全文