摘要

由于传感器分辨率的限制以及地物的复杂多样性,混合像元普遍存在于遥感影像中,在一定程度上影响到地物提取精度。以江西省庐山及周边地区2019年4月9日的ETM+影像为例,使用线性混合模型和非线性的BP神经网络方法对图像进行混合像元分解,利用2019年5月的SPOT数据及其与ETM+影像融合的分类结果对分解结果进行验证。结果表明,非线性的BP神经网络分解精度高于线性分解精度。对比使用BP神经网络分解图像提取林地面积的精度提高了1%~5%。