摘要
通过整合的数字化审计平台获取所需审计信息,对所获信息中的图像展开小波变换分解,滤除审计图像噪声的同时提升其质量。结合基于Canny算子的边缘检测与区域分割技术分割完成预处理的审计图像,将完成分割的审计图像输入卷积神经网络,通过卷积层卷积处理审计图像提取审计图像文字特征。经下采样层累积卷积结果得出审计图像文字特征映射图,通过全连接网络判定所提取审计图像文字特征,输出识别结果后通过基于Relief算法的多特征融合方法改进卷积神经网络识别结果。实验结果表明,该方法具有较好的噪声滤除与分割效果,能够精准、清晰识别审计图像中的文字信息。