摘要

设(X,d)为紧致度量空间,f:X→X连续,K(X)是由X的所有非空紧致子集构成的集族,H是由d所诱导的Hausdorff度量,则(K(X),H)是由X的所有非空紧致子集构成的紧致度量空间,-f:K(X)→K(X)连续,-f(A)={f(x):x∈A}研究了-f的扩张性、点态稳定性、性质p、链可迁(混合)、伪轨跟踪性质,以及这些极限行为在(X,f)与(K(X),-f)之间的内在联系。