摘要

行人重识别是通过不同的摄像机识别同一个人。由于人的姿势多变,背景杂乱以及拍摄角度不同等,提取强大的行人特征成为一个有挑战性的任务。为了提取良好的行人特征表示,本文提出了一种结合MASP与语义分割的双链路行人重识别模型。本文方法对网络不同深度的特征进行采样,不同深度的特征图具有不同的表达能力,使网络可以学习到行人身上更加细粒度的特征。上层链路针对网络过深导致行人信息丢失的问题,提出了MASP模块,对浅层特征进行采样,然后与高级特征连接,对深浅层级特征交融,增加特征的多样性。下层链路基于语义分割结果,对提取的中间层行人特征映射,得出语义部位特征。在测试阶段,将全局特征与语义部位特征结合生成多层次特征,加强模型的表征能力。在Market-1501和DukeMTMC-reID两个数据集上与其他方法的对比以及消融实验表明,本文提出的结合MASP与语义分割的双链路重识别模型有效提升行人重识别性能。