摘要

激光光源具有单色性好、亮度高、方向性强和相干性强等优势,所以基于干涉原理对激光光谱进行积分可以应用于微位移测量领域。在重力方法探测过程中,因地质结构不同引起万有引力差异而造成的探测质量块位移十分微小,通常为纳米级,所以研制高精度纳米级微位移测量系统尤为重要。然而传统电容位移测量法在防止电磁干扰等方面存在不足。相比较而言,光学干涉法具备抗电磁干扰、环境适应性强等优点,且精度不亚于电容法。传统干涉系统光路复杂、难于集成,对重力仪的小型化与集成化不利。所以研制一种结构紧凑的光学干涉系统用于实现纳米级微位移测量成为亟需。基于可变相位延迟的激光干涉式方法,能够实现亚纳米级微位移测量,较传统干涉系统具备结构紧凑、易于集成的优势。本微位移测量系统由半导体激光器、起偏器、检偏器、楔形双折射晶体组和光谱仪组成。研究从以下方面展开:首先是确定测量系统方案,提出了偏振光干涉双路结构,以楔形双折射晶体组作为核心器件,将晶体间相对位移转化为o光和e光的差别化相位延迟,并对激光光谱进行积分,进而将位移变化转变为合成光强的变化;其次是建立测量位移物理模型,根据设计的双折射晶体组几何结构、位移过程与光路,确定光强变化与待测位移量之间的关系;第三是系统参数优化,为了使系统的测量误差和量程满足实际需求,利用已建立的物理模型,将测量误差和量程分别与晶体切割角度α、激光器激射波长λ建立函数关系。根据应用需求,确定适当的误差和量程取值范围,进而得到角度α和波长λ取值范围;最后加工晶体、搭建系统并进行测试。具体即以α和λ为调控参量,联合考虑"近似线性化"和"激光器光强波动误差"对系统量程进行优化仿真。同样,联合考虑"激光器光强波动误差"和"激光器波长波动误差",并利用"系统最大位移量"(与量程有关)对系统测量误差进行优化仿真。最终确定钒酸钇晶体切割角度α为20°,激光器激射波长λ为635nm。实验中,以10nm为间隔利用压电陶瓷设置位移量进行位移测试,包括:系统的线性标定、系统量程和测量误差测试。另外,在保持待测位置不变的条件下,利用本位移测量系统进行了2h不间断测量,并通过阿伦方差确定了系统的位移探测下限。实验结果表明,位移量程范围大于150nm,位移测量误差约0.5nm,位移探测下限为0.32nm@23s,探测线性度判定系数(R2)为0.999 85。综上所述,以自制楔形双折射晶体组作为核心器件的可变相位延迟激光干涉式微位移测量系统,可作为重力探测中的质量块位移测量单元。与电容法相比具有更强的环境适应性;与传统干涉系统相比具有结构简易、光路紧凑等优点,便于重力仪的小型化与集成化。