摘要

目的为了提高彩色物体配准的精度,针对3维点云颜色信息易受光照条件影响的问题,提出一种基于光照补偿的RGB-D(RGB Depth)点云配准方法。方法引入同态滤波算法,并将模型对象的3维点云转化成线性点序列,从而对颜色信息进行光照补偿,以提高颜色信息的一致性;获取模型的颜色和几何特征并加权组合成混合特征,以此定义源点云的特征点,并运用K近邻算法搜索其对应点;用奇异值分解(SVD)得到配准的刚性变换矩阵。结果进行传统的迭代最近点法(ICP)算法、深度信息与色调相结合的算法以及本文算法在不同的光照强度组合的模型配准对比实验,结果显示,在网面凹凸均匀的大卫模型上,配准时间及特征点匹配平均误差方面均约减少到对比方法的1/2;在网面光滑的barrel模型和网面凹凸不一致的阿基米德模型上,特征点匹配平均误差约分别减少到对比方法的1/6和1/8。此外,与Super 4-Points Congruent Set(Super 4PCS)、彩色点云配准算法在不同组合光照强度下进行对比实验,针对4种不同的网面结构模型,本文算法的SIFT特征点距离平均误差全距约减少到对比方法的1/5。结论利用同态滤波算法抑制光照影响,提高了颜色信息的一致性,在一定效果上消除了光照强度不均匀对3维点云配准精度的干扰。