摘要
针对目前钢轨顶面擦伤检测系统缺少第三维关键深度信息,检测结果易受干扰误报率高的问题,提出了一种基于双模态结构光传感器的钢轨表面缺陷检测方法。通过构建轨道表面缺陷的多模态深度学习检测网络,可以检测双模态钢轨图像中的擦伤缺陷。提出的深度网络分别融合了双模态图像的多尺度特征,并进行多尺度钢轨顶面擦伤检测。实验结果表明,该方法在显著降低检测误报的同时能够保持较高的检出率。与当前缺陷检测中常见的深度学习检测模型对比,平均精度均值(mAP)有大幅提升,性能优于以往的检测算法,在钢轨顶面擦伤检测任务中的应用前景良好。
- 单位