摘要

针对固定节点数的渐进最优快速扩展随机树(RRT*FN)算法精度低、对环境缺乏适应性等问题,提出了一种改进RRT*FN的机械臂运动规划算法。在迭代过程中,结合目标偏向随机采样和椭球子集采样的优势,构造新的启发式方法对采样区域进行约束,从而保证搜索路径更优。在扩展节点时,配置树中总节点数的预设值,并通过加权方法对树中叶子节点进行删减,避免了树规模的无限增长。在动态环境下,采用对节点剪枝与连接的启发式重规划方法,有效提高了对动态环境的适应能力。实验结果表明,该算法在规划过程中收敛速度更快,效率更高,具有较强的环境适应性。