摘要
针对传统RRT算法在复杂环境中对不必要区域的搜索和路径规划的时间代价过高等问题,提出了一种双向同时无碰撞检测目标偏置快速扩展随机树算法——*TNCG-RRT。该算法将B-RRT*中的双向搜索策略和BIT*中的启发式搜索融合作为文中的基础算法,引入神经网络的批量抓取数量决定一次采样的节点数目从而影响采样速度;然后,将正向树和反向树的扩展同时进行以加快路径搜索速度,通过对目标偏向策略中扩展顶点队列的改进和对采样区域的不断更新明确扩展方向,缩小随机树生长的范围;最后,利用3次B样条曲线使生成的路径趋于平滑。与B-RRT算法和BIT*算法进行对比实验,实验结果表明:TNCG-RRT*算法在路径生成时间上缩短4.5%,剪枝数增加80%,路径代价(即路径长度)缩短9%,证明了TNCG-RRT*算法的有效性。
- 单位