摘要

基于P-SIFT和P-SURF描述算子来研究杂草种子图像的自动识别性能,其中每个图像分片均使用多层次的描述算子细节表示,这些层次依据局部空间合并分辨率定义。在特征提取部分采用三种编码技术,即BOW模型,Locality-Constrained Linear Coding算法和Fisher Vector模型来提高分类性能;在分类部分采用Sparse Representation Classifier (SRC),Label Consistent K-SVD (LC-KSVD)和SVM分类器,其中SVM使用RBF和Histogram Intersection Kernel核函数。P-SIFT和P-SURF描述算子在使用三层空间金字塔和三层特征金字塔时取得了最高89.7%和86.2%的识别率,与SIFT和SURF描述算子相比较识别率有了很大提高。实验结果表明,在传统的局部描述算子基础上,基于特征金字塔描述算子来提取特征和基于空间金字塔来合并特征可以提高分类性能。