摘要
在电力市场环境下,精准的短期电价预测可以保障电网优化调度和安全稳定运行,但实时电价具有非平稳性和非线性的特点,加大了预测难度。针对这一问题,提出了一种基于小波包分解(WPD)和长短期记忆(LSTM)网络的短期实时电价预测方法。将实时电价序列分解,得到最高频细节部分和低频趋势部分,剔除波动性高、无效信息多的高频细节部分,再采用LSTM网络对有效信息最多、更能体现电价序列的趋势部分进行实时电价预测。使用所提方法对美国PJM市场某地区实时电价数据进行预测实验,结果表明所提方法相比随机森林、BP神经网络、支持向量机电价预测方和传统的LSTM网络电价预测方法具有更高预测精度。
- 单位