摘要

为了提高样本不均衡条件下轴承故障诊断精度,提出了基于VAE-SNN的样本增广方法和基于非平衡损失网络的故障诊断方法。首先,使用变分自编码器用于数据生成,并依据孪生神经网络对生成数据的类别进行判定,实现了基于变分自编码器和孪生神经网络的样本增广;其次,分析了卷积神经网络无差别对待样本的缺点,针对不均衡样本的特殊性,提出了非平衡损失函数卷积网络,该网络能够自动关注数量少、难分的样本训练。经实验验证,生成对抗网络增广的样本相似度为0.847,孪生神经网络增广的样本相似度比对抗网络提高了6.61%,说明孪生神经网络的样本增广效果更好;在相同诊断方法前提下,样本增广后比增广前的准确率提高了9.42%,说明样本增广有利于提高轴承的故障诊断准确率;非均衡损失网络比卷积神经网络的诊断精度提高了7.17%,比自适应深度学习提高了4.12%,验证了非均衡损失网络的高准确率和优越性。

  • 单位
    无锡工艺职业技术学院

全文