摘要
宁夏盐池县荒漠草地属于中温带干旱气候,由于过度利用出现不同程度的退化,退化指示种比重增大,造成不同荒漠草地群落组成差异也很大,如何区别不同荒漠草地植物,并据此对退化指示种进行动态监测是了解荒漠草地退化程度的关键。目前随机森林(RF)、支持向量机(SVM)与K-邻近(KNN)分类模型被广泛应用于森林植物和农作物的遥感分类,并取得了较好的分类识别效果,但针对草地尤其是荒漠草地植物的分类识别研究较少。因此使用ASD地物光谱仪于7月在宁夏盐池二步坑、冯记沟、高沙窝、麻黄山不同荒漠草地采集了32种植物作样本获得442条光谱进行光谱特征分析。筛选出7个植被指数:归一化植被指数705(NDVI_(705))、绿通道植被指数(GNDVI)、光化学植被指数(PRI)、土壤调节植被指数(OSAVI)、可视化气压阻抗指数(VARI)、植被衰减指数(PSRI)和归一化水指数(NDWI)作为随机森林模型(RF)、支持向量机(SVM)模型、 K-邻近(KNN)模型的原始变量,对32种荒漠草地植物进行分类识别,并通过分类模型精度的比较筛选较优模型。结果表明:(1)不同植物光谱反射率均符合绿色植物特征,但各植物原始光谱不同波段之间存在明显差异,植物原始光谱水分吸收波段差异明显,且有红边蓝移现象;(2)RF, SVM和KNN三个分类模型对32种植物的分类精度分别达到了0.98, 0.94和0.98,识别效果较好,但3种分类模型均对白莲蒿与北芸香、虫实与甘草发生了误判;(3)随机森林模型重要性指标中NDWI与PRI为区分荒漠草地植物的关键指标,说明荒漠植物冠层水分与类胡萝卜素含量是影响荒漠草地植物光谱分类的重要因素。试验利用随机森林模型(RF)、支持向量机(SVM)与K-邻近(KNN)分类方法,建立了主要植物的分类模型。
-
单位草地农业生态系统国家重点实验室; 甘肃农业大学; 甘肃省草原技术推广总站