摘要

针对传统故障诊断方法只关注故障检测部分,而对样本是否存在故障的研究较少的问题,提出了一种基于自适应噪声完备经验模态分解(CEEMDAN)-注意熵(AE)和黏菌算法优化极限学习机(SMA-ELM)的旋转机械综合故障诊断模型。首先,针对正常样本和故障样本的复杂性差异,建立了注意熵阈值,计算旋转机械的AE,并将其与阈值进行了比较,若熵值小于该阈值则表明样本存在故障,反之样本是健康的;然后,利用CEEMDAN对故障样本的振动信号进行了分解,提取前6阶分量的AE值;最后,将故障特征输入至SMA-ELM模型中进行了故障识别,利用3种旋转机械故障数据集对该综合故障诊断模型的可靠性进行了研究。研究结果表明:该阈值设置方法可以100%准确地检测样本是否存在故障,后续的故障诊断模型能够准确地检测出样本的故障类型,识别准确率分别达到了99.44%、100%和98%。该综合故障诊断模型能够避免正常样本被误判为故障样本,为旋转机械的故障检测提供了一种可行的思路。

  • 单位
    黄河水利职业技术学院; 机电工程学院; 华南理工大学; 湖北轻工职业技术学院

全文