为提高传统协同过滤算法在个性化推荐系统中的大数据处理能力,研究了一种基于模糊聚类的并行推荐算法。在Hadoop平台下首先通过PCA降维和FCM聚类对用户物品评分矩阵进行预处理,采用皮尔逊相关系数计算用户间的相似度,通过得到的聚类簇集合构建最近邻集合,生成基本预测评分。最后实现算法的并行化处理并得到推荐结果。实验结果表明,与基于PCA降维的协同过滤和单机式传统协同过滤算法相比,该算法提高了推荐的准确性和实时性。