摘要

针对强背景噪声下机械故障微弱暂态特征表示和有效提取的难题,提出了通用的稀疏优化特征提取算法。算法针对含噪声冲击性特征提取问题设计了稀疏优化表征函数,该函数融合了冲击特征的保真度与惩罚函数因子,考虑了正则化参数以适应不同工程背景下各分析因子的实际影响,实现处理结果稀疏性极大化。同时,引入受控极小化方法对设计的表征函数进行转化,分解成一系列凸优化分析问题。提出了针对离散信号的有限差分式数值迭代算法,验证了其快速收敛性和数值稳定性,提出的算法对机械故障诊断的数字采样信号具有普遍适用性。将所提出的算法应用于实验室环境下的轴承故障特征识别中,无论是低噪声还是低信噪比白噪声环境下,振动信号中的冲击特征都得到了显著增强,在Hilbert包络谱中的故障特征频率及其高次谐波比能量中占优。所提出的算法还应用于电力机车走行部轮对的故障诊断中,在高强度的工程有色噪声环境下精确提取了其中的冲击衰减成分,在时域和频域诊断结果中都得到了准确的验证,指导了诊断实践。

  • 单位
    西安交通大学机械制造系统工程国家重点实验室; 厦门大学; 航天学院