摘要
针对目前的分数阶非线性模型图像特征提取能力不足导致分割精度较低的问题,提出一种基于分数阶网络和强化学习(RL)的图像实例分割模型,用来分割出图像中目标实例的高质量轮廓曲线。该模型共包含两层模块:1)第一层为二维分数阶非线性网络,主要采用混沌同步方法来获取图像中像素点的基础特征,并通过根据像素点间的相似性进行耦合连接的方式获取初步的图像分割结果;2)第二层通过RL思想将图像实例分割建立为一个马尔可夫决策过程(MDP),并利用建模过程中的动作-状态对、奖励函数和策略的设计来获取图像的区域结构和类别信息。最后将第一层获取到的像素特征和初步的图像分割结果与第二层获取到的区域结构和类别信息联合起来进行实例分割。在Pascal VOC2007和Pascal VOC2012数据集上的实验结果表明,这种基于连续决策的图像实例分割模型与传统的分数阶模型相比,平均精度(AP)至少提升了15个百分点,不仅能够获取图像中目标物体的类别信息,而且进一步提升了对图像轮廓细节和细粒度信息的提取能力。
-
单位重庆地质矿产研究院; 重庆大学; 河北经贸大学