Utility and potential of rapid epidemic intelligence from internet-based sources

作者:Yan S J; Chughtai A A; Macintyre C R
来源:International Journal of Infectious Diseases, 2017, 63: 77-87.
DOI:10.1016/j.ijid.2017.07.020

摘要

Objectives: Rapid epidemic detection is an important objective of surveillance to enable timely intervention, but traditional validated surveillance data may not be available in the required timeframe for acute epidemic control. Increasing volumes of data on the Internet have prompted interest in methods that could use unstructured sources to enhance traditional disease surveillance and gain rapid epidemic intelligence. We aimed to summarise Internet-based methods that use freely-accessible, unstructured data for epidemic surveillance and explore their timeliness and accuracy outcomes. Methods: Steps outlined in the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) checklist were used to guide a systematic review of research related to the use of informal or unstructured data by Internet-based intelligence methods for surveillance. Results: We identified 84 articles published between 2006-2016 relating to Internet-based public health surveillance methods. Studies used search queries, social media posts and approaches derived from existing Internet-based systems for early epidemic alerts and real-time monitoring. Most studies noted improved timeliness compared to official reporting, such as in the 2014 Ebola epidemic where epidemic alerts were generated first from ProMED-mail. Internet-based methods showed variable correlation strength with official datasets, with some methods showing reasonable accuracy. Conclusion: The proliferation of publicly available information on the Internet provided a new avenue for epidemic intelligence. Methodologies have been developed to collect Internet data and some systems are already used to enhance the timeliness of traditional surveillance systems. To improve the utility of Internet-based systems, the key attributes of timeliness and data accuracy should be included in future evaluations of surveillance systems.