摘要
目的在序列图像或多视角图像的目标分割中,传统的协同分割算法对复杂的多图像分割鲁棒性不强,而现有的深度学习算法在前景和背景存在较大歧义时容易导致目标分割错误和分割不一致。为此,提出一种基于深度特征的融合分割先验的多图像分割算法。方法首先,为了使模型更好地学习复杂场景下多视角图像的细节特征,通过融合浅层网络高分辨率的细节特征来改进PSPNet-50网络模型,减小随着网络的加深导致空间信息的丢失对分割边缘细节的影响。然后通过交互分割算法获取一至两幅图像的分割先验,将少量分割先验融合到新的模型中,通过网络的再学习来解决前景/背景的分割歧义以及多图像的分割一致性。最后通过构建全连接条件随机场模型,将深度卷积神经网络的识别能力和全连接条件随机场优化的定位精度耦合在一起,更好地处理边界定位问题。结果本文采用公共数据集的多图像集进行了分割测试。实验结果表明本文算法不但可以更好地分割出经过大量数据预训练过的目标类,而且对于没有预训练过的目标类,也能有效避免歧义的区域分割。本文算法不论是对前景与背景区别明显的较简单图像集,还是对前景与背景颜色相似的较复杂图像集,平均像素准确度(PA)和交并比(IOU)均大于95%。结论本文算法对各种场景的多图像分割都具有较强的鲁棒性,同时通过融入少量先验,使模型更有效地区分目标与背景,获得了分割目标的一致性。
-
单位南昌航空大学; 中国科学院