传统的协同过滤推荐算法存在推荐准确性不高的问题。在计算相似度时,当得分向量的结果差异性不大时,可能会产生相似的结果向量,从而降低相似度结果的准确性。针对这一问题,提出一种优化的用户相似度协同过滤推荐算法,在传统的余弦相似度计算中加入一个平衡因子,并通过实验验证加入的平衡因子阈值算法的有效性。实验结果表明,优化的用户相似度协同过滤推荐算法能够显著提升用户相似度计算的准确性,从而得到较好的推荐结果。