背景差分法可完整快速地分割出目标图像,但其在背景扰动与光照变化等情况下检测效果不佳。文中提出一种基于特征融合的背景差分改进算法。该算法将时空局部二值模式纹理特征以及颜色特征相融合,同时考虑两特征的置信度和相似性得分得出背景概率,继而进行前景分割,并将当前检测出的背景像素用于背景模板更新,以便更好地解决复杂背景下的目标检测问题。实验结果表明,新算法的检测效果优于其他同类算法,在保持背景差分算法鲁棒性与复杂度的同时,在背景扰动与光照变化等情况下表现出了良好的检测效果。