基于深度森林的高压断路器弹簧机构状态识别

作者:于晨晖; 王浩名; 李一; 李红运; 刘亚魁
来源:高压电器, 2023, 59(02): 37-51.
DOI:10.13296/j.1001-1609.hva.2023.02.006

摘要

系统的安全稳定运行与高压断路器的可靠性密切相关,合闸阶段的行程曲线可以反映出高压断路器的弹簧机构机械状态,是实现状态识别的重要判据,因此基于行程数据的弹簧机构状态辨识具有重要的研究意义。文中对合闸弹簧预压缩量减少10 mm或15 mm、分闸弹簧预压缩量减少10 mm或15 mm、油缓冲器抽油10 mL或30 m L、传动构件卡阻档位1或档位2以及正常状态下9种合闸特性曲线进行了采集,然后基于深度森林(deep forest,DF)算法构建辨识模型,最后将识别结果与主成分—支持向量机、随机森林算法进行对比。结果表明,深度森林和随机森林的识别效果一致,且明显优于主成分—支持向量机。此外,深度森林的优势还体现在其避免了随机森林的调参过程,具有更好的识别效率。