摘要

为了在使用少量标注样本情况下提升变电站设备缺陷检测精度,提出一种基于自监督模型SimSiam的改进缺陷检测算法.不同于原始SimSiam,改进后的算法无需使用标志性图像(iconic images),如ImageNet数据集,而是直接利用非标志性图像(non-iconic images)如COCO数据集进行对比学习,并在下游的缺陷检测任务上获得可媲美有监督方法的性能.通过在投影层(projection head)和预测层(prediction head)中使用全卷积网络和空间注意力模块来代替MLP,保留高维特征的空间结构及局部信息;同时在计算相似度前先对特征图进行均值池化以得到特征向量,并对特征向量进行归一化以计算欧氏距离,从而改进了自监督对比学习的损失函数.实验结果表明该算法能充分利用非标志性图像进行对比学习,并在只标注少量样本的条件下提升变电站设备缺陷检测的精度,在表计表盘破损、挂空悬浮物、鸟巢、呼吸器硅胶变色及箱门闭合异常等5类缺陷检测任务上mAP达到83.84%.

全文