摘要
脑电信号的非线性、非平稳性和微弱性造成对运动想象脑电信号的分类存在特征提取困难,分类结果不理想,分类性能受噪声影响明显等问题。为此,提出了一种基于因子分析(Factor Analysis,FA)模型的噪声稳健运动脑电信号分类方法。首先利用FA模型对脑电信号中存在的噪声分量进行抑制,针对重构信号可分性较差的问题,将其转换至功率谱域,进而提取三维能够反映不同运动状态的功率谱特征,最后利用支撑向量机(Support Vector Machine,SVM)分类器对所提特征向量进行分类判决。基于Graz数据的验证实验表明,所提方法可以明显提升低信噪比条件下的分类性能,在实际工程应用中具备较强的推广泛化能力。
- 单位